Unit Root Test ing in ARMA Models: A Likelihood Ratio Approach

نویسندگان

  • Juan Ramón Hernández González
  • Juan Ramón Hernández
چکیده

In this paper I propose a Likelihood Ratio test for a unit root (LR) with a local-to-unity Autoregressive parameter embedded in ARMA(1,1) models. By dealing explicitly with dependence in a time series through the Moving Average, as opposed to the long Autorregresive lag approximation, the test shows gains in power and has good small-sample properties. The asymptotic distribution of the test is shown to be independent of the short-run parameters. The Monte Carlo experiments show that the LR test has higher power than the Augmented Dickey Fuller test for several sample sizes and true values of the Moving Average parameter. The exception is the case when this parameter is very close to -1 with a considerably small sample size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

Weighted Least Absolute Deviations Estimation for Arma Models with Infinite Variance

For autoregressive and moving-average (ARMA) models with infinite variance innovations, quasi-likelihood based estimators (such as Whittle’s estimators ) suffer from complex asymptotic distributions depending on unknown tail indices. This makes the statistical inference for such models difficult. In contrast, the least absolute deviations estimators (LADE) are more appealing in dealing with hea...

متن کامل

Discriminant Analysis for ARMA Models Based on Divergency Criterion: A Frequency Domain Approach

The extension of classical analysis to time series data is the basic problem faced in many fields, such as engineering, economic and medicine. The main objective of discriminant time series analysis is to examine how far it is possible to distinguish between various groups. There are two situations to be considered in the linear time series models. Firstly when the main discriminatory informati...

متن کامل

The Restricted Likelihood Ratio Test at the Boundary in Autoregressive Series

The restricted likelihood ratio test, RLRT, for the autoregressive coefficient in autoregressive models has recently been shown to be second order pivotal when the autoregressive coefficient is in the interior of the parameter space and so is very well approximated by the χ1 distribution. In this paper, the non-standard asymptotic distribution of the RLRT for the unit root boundary value is obt...

متن کامل

An Adf Coefficient Test for a Unit Root in Arma Models of Unknown Order with Empirical Applications to the Us Economy By

This paper proposes an Augmented Dickey–Fuller (ADF) coefficient test for detecting the presence of a unit root in autoregressive moving average (ARMA) models of unknown order. Although the limit distribution of the coefficient estimate depends on nuisance parameters, a simple transformation can be applied to eliminate the nuisance parameter asymptotically, providing an ADF coefficient test for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016